
Python – week1

Contents
Python – week1... 1

Intro: ... 2

Getting Started with Eclipse ... 2

Lessons: ... 8

Application # 1. ... 15

Design. ... 15

Coding. .. 15

What is 'if __name__ == "__main__"' for? ... 21

Resources: ... 21

Intro:

Pygame is a python wrapper for SDL, written by Pete Shinners. What this means is that,

using pygame, you can write games or other multimedia applications in Python that will run

unaltered on any of SDL's supported platforms (Windows, Unix, Mac, beOS and others).

If we get some time towards the end of term4 we will look at wxPython and py2exe.

Getting Started with Eclipse

Eclipse unpacks to a folder ready to use. Find the exe and run it. We need to add PyDev so follow

these instructions.

1. When Python first starts it will ask you for a default workspace. As TAFE computers’

desktops get nuked every time there is a problem set this to your Hard Drive instead.

2. If you run into problems with workspaces, once the navigator has started just switch using

this menu...

http://www.pygame.org/
http://www.libsdl.org/

3. To install Pydev and Pydev Extensions using the Eclipse Update Manager, you need to use

the Help > Install New Software... menu (note that in older versions, this would be the 'Find

and Install' menu).

4. Type in a custom name for the plugin addition and add the link provided

(http://pydev.org/updates)

5. Now you get this screen. Only tick PyDev and it’s child then click next.

6. You will see this window next once it’s located the resources online. Click Next to continue.

7. Accept the terms and conditions and click on Next.

8. Next you will see the updating in progress – just let it run.

9. If you see this warning (probably only Vista) just click Yes

10. Once completed you will see this dialog. Restart Eclipse by clicking on Yes.

11. Configuration of Eclipse. You have to maintain in Eclipse the location of your Python

installation. Open in the menu Window -> Preference and select Pydev-> Interpreter Python.

12. Press New then point the Python25 folder – it should be off the root of C:\. Now press okay

13. You will see this dialog open as it processes the files.

14. Finally you will see this screen.

15. Don’t change anything – just click okay.

16. Now you will see the original screen look like this. You are ready to start programming in

Python!

Lessons:

Your first Python program.

1. Open Eclipse

2. File->New Project -> PyDev->PyDev Project

3. Click Next then change interpreter to Python25 and Grammer to 2.5, and give it a

name at the top. Click Finish

4. Right click on the “src” folder and click on New->Python Module

5. Call the file Main (no Package at this stage), select Template as Module:Main and

click Finish

6. Now you‟ll see this. This is the template code to run as a module.

7. What does it mean? Let‟s take a look.

8. The ‟‟‟ characters at the top is the standard DOCSTRING notation and can be

considered as commenting. Comment as much as you can. You always end a

comment block with a terminating „‟‟ as seen after @author: Andy

9. The next line is curious if __name__ == „__main__‟: then pass. This

is a trick for Python which allows you to have this .py file exist as a module or a

standalone file. See appendix for more information.

10. The pass just means that – do nothing and move on. But we want it to do

something.

11. Introducing the print statement! Print mainly prints characters to the screen. So type

in the follow. Erase pass with the words print “hello world”.

12. Now you need to run it. But before that you need to create a run configuration. Up

the top you‟ll see a green play button – a big one – there‟s a down arrow next to it –

click on that to bring up the menu below. Click on that then click on Run

Configurations.

13. You‟ll see this screen next, double click on Python Run to create a

New_configuration.

14. Next you need to browse to the main source file – which we already have.

15. Now click on the Main Module browse button then expand src and click on Main.py.

As this is your main module. Then click on Okay.

16. Next click on Apply, then Run.

17. In the console you will the follow “hello world” – well done! You have created your

own hello world program in Python.

18. So what‟s this hello world stuff anyway? Hello World is a standard practice for

programmers. Basically it‟s the icing on the cake when you start a new project, using

new software and want to make sure you know how to compile your program and get

the results on the screen. It could be elaborated to “Finally I got through all that

technical guff and got something on screen, so HELLO WORLD! – Phew”.

Application # 1.

So we are doing this unit called Automate Processes. What does this mean exactly? Well computers

are great at it. You usually apply it to something that would take a human a long time to do, so

make a computer do it. You are probably thinking I’m going to get you to write some ugly

processing thing like a staff list and mailing list – let’s look at something more practical and relevant.

You may have an iPod / iPhone and it’s got this great feature called Shuffle. But how does it work

exactly? Well let’s write our own using Python.

Design.

Let’s identify the core functionality of the Shuffle process.

1) Takes a list of songs

2) Randomises the play order.

3) Keeps track of that play list so you can skip backward and forward

4) Never plays the same song twice in a shuffled playlist.

So how do we write this in Python? Let’s do one step at time and learn a bit about programming

along the way.

Python has a great system of storage called a list. A list is an array of items, and in this case

we want to store the name of each song.

Coding.

In your Main.py function go to the line that says print “hello world” and replace it with

 print “My iPod Shuffle Simulator”...

and after than type the following...

 shuffleList()

 showList()

So your code should look like this ... (Don‟t worry about the red

X‟s – the IDE is just saying these function don‟t exist.)

Okay so let’s write the function headers... remember we can use pass so that the function doesn’t

do anything? So that’s what we’ll do.

A function is defined first before it can be called. We use the keyword def, the name of the

function, an empty parameter list and then ending with a colon (:). Be sure to TAB in on the next

line when adding the pass keyword. Should look like this...

You will also notice on the right hand side that Outline contains the new functions.

We need to create the variable myItunesLibrary at the top of the program so all of the code

can access it. Let’s add an empty list, then fill it with some songs using the append function available

to lists – it’s on the network so just copy and paste (playlist.txt)

Above that let’s add another list to be the actual playlist called myPlaylist.

Okay so now for the hard part – the shuffling. Shuffling is done by randomly picking a song from a

temporary library that originally is a copy of the iTunes library, which gets smaller and smaller as we

remove each randomly selected song. We do this because we don’t want the same song repeated in

the play list.

So let’s break it down into smaller steps or pseudocode.

1) Make a copy of the library.

2) Continue until the temp list is empty

3) Randomly pick a song from the temp list.

4) Add that song to the playlist.

5) Remove the picked song from the temp list

Now let’s code it in.

Firstly we need to access a randomise function called choice. This is sitting in a module called

random. So firstly we code the part where we import that functionality.

Go to the shuffleList() function and type this...

Also notice the use of ‘’’ comment ‘’’ and the # hash symbol. These are two ways of commenting in

Python. The convention is to the use the DOCSTRING type on commented at the beginning of a

function to demonstrate it functionality. The second method of using # is inline commenting.

Please comment as much as possible because of the abbreviated nature of Python it’s often difficult

to understand what you wrote weeks after writing some code and trying to work out what it’s

doing.

Next let’s begin with step 1 from our functional design.

1) Make a copy of the library –

Notice we use two underscores. This is Python’s way of creating a local variable.

If you check the Outline it won’t show it. This is to do with scope. Scope determines where a

variable is valid and useable.

In this case we only want to use it for the one function and once we pop out of the function the

variable goes out of scope and the memory is returned to the system.

Next we need loop through the list.

2) Continue until the temp list is empty

We do this because of the way loops work. We need to set the condition of the loop first.

Now that we have added while (len(__myTempList) > 0): line, everything after that

needs to be indented to make sure it only runs during this condition.

Next step...

3) Randomly pick a song from the temp list.

4) Add that song to the playlist.

Why are we doing two steps in one? Well Python is highly optimised and allows to do stuff like this –

this is why Python rocks. (notice we have indented the code so it only runs while the __myTempList

still has songs to choose from.

Finally we want to avoid picking the song again so we remove it from the temp list.

5) Remove the picked song from the temp list.

This is easy because Python lists have a function just for this – remove.

Okay – shuffleList() function done.

Last thing is to display this list. So let’s add to the showList() function.

We use the enumerate function because we need to have the place of the item in the list as well

as the item itself. Also as is true for most lists and array in computer programming languages, they

are 0 based, but humans like lists to start with 1, so we add 1 to the __index variable.

Also notice we are using local variables because we aren’t interested in them after the function pops

out.

Okay run it – what do we see? Keep running it and every time you get a new playlist, that never

repeats a song.

Because the play list is now stored we could go back forth using index or go back by remember the

previous song using a temp variable if we wanted to.

Here’s one way you could do it.

Here’s the new output, notice the skip forward 2 then back one at the end.

All done? Let’s revisit what we did to start with by reading the appendix.

APPENDIX

What is 'if __name__ == "__main__"' for?

The if __name__ == "__main__": ... trick exists in Python so that our Python files can

act as either reusable modules, or as standalone programs. As a toy example, let‟s say that we

have two files:

$ cat mymath.py

def square(x):

 return x * x

if __name__ == '__main__':

 print "test: square(42) ==", square(42)

$ cat mygame.py

import mymath

print "this is mygame."

print mymath.square(17)

In this example, we‟ve written mymath.py to be both used as a utility module, as well as a

standalone program. We can run mymath standalone by doing this:

$ python mymath.py

test: square(42) == 1764

But we can also use mymath.py as a module; let‟s see what happens when we run

mygame.py:

$ python mygame.py

this is mygame.

289

Notice that here we don‟t see the „test‟ line that mymath.py had near the bottom of its code.

That‟s because, in this context, mymath is not the main program. That‟s what the if

__name__ == "__main__": ... trick is used for.

Resources:
1) Python 2.5 (http://www.python.org/download/releases/2.5.5/)

2) PyGame for Python 2.5 (http://www.pygame.org/download.shtml)

3) Eclipse (http://www.eclipse.org/downloads/download.php?file=/eclipse/downloads/drops/R-

3.5.2-201002111343/eclipse-SDK-3.5.2-win32.zip)

4) PyDev (http://sourceforge.net/projects/pydev/)

(just for my reference - don't download) Tutorials:

http://www.python.org/download/releases/2.5.5/
http://www.pygame.org/download.shtml
http://www.eclipse.org/downloads/download.php?file=/eclipse/downloads/drops/R-3.5.2-201002111343/eclipse-SDK-3.5.2-win32.zip
http://www.eclipse.org/downloads/download.php?file=/eclipse/downloads/drops/R-3.5.2-201002111343/eclipse-SDK-3.5.2-win32.zip
http://sourceforge.net/projects/pydev/

http://www.vogella.de/articles/Python/article.html#configuration

GLU-IT (http://www.downloadsofts.com/download/Graphic-Apps/Editors/Glue-Sprites-download-

details.html)

AUDACITY (http://audacity.sourceforge.net/download/)

Tortoise SVN (http://downloads.sourceforge.net/tortoisesvn/TortoiseSVN-1.6.3.16613-win32-svn-

1.6.3.msi?download)

Python 2.0 Quick Reference

http://www.vogella.de/articles/Python/article.html#configuration
http://www.downloadsofts.com/download/Graphic-Apps/Editors/Glue-Sprites-download-details.html
http://www.downloadsofts.com/download/Graphic-Apps/Editors/Glue-Sprites-download-details.html
http://audacity.sourceforge.net/download/
http://downloads.sourceforge.net/tortoisesvn/TortoiseSVN-1.6.3.16613-win32-svn-1.6.3.msi?download
http://downloads.sourceforge.net/tortoisesvn/TortoiseSVN-1.6.3.16613-win32-svn-1.6.3.msi?download
http://www.brunningonline.net/simon/python/quick-ref2_0.html

