
Python Lecture 3 – week4

Contents
Game Design. .. 2

Movement Code ... 2

Updating the Main file .. 5

Adding your own art. .. 9

Resources: ... 9

Game Design.

Now we have a rudimentary world collision system let’s discuss what’s next. Going back to our

original design of Input, Output, Encapsulation, we have cover some input, out but no encapsulation.

We can deal with say a title screen soon, as well as character sheet, but first of all let’s get the

character moving.

Once you finish this tutorial please spend the rest of your time this week working on your game

design document.

Grab the source code we know works from here...run it to check and notice the player is smaller.

http://www.drewfx.com/TAFE/python/week4_source.zip

Movement Code
PyGame offers input for the mouse and keyboard. We have already seen it used for escaping the

application here in Main.py...

Let’s extend this a little more and allow for the WASD keys to move the player around. We really

need a player class to send movement message to, so let’s make a new class.

Create a new python file called Player.py

Inside it create the following class specification...

http://www.drewfx.com/TAFE/python/week4_source.zip

Notice firstly the from GameScreenLayer import *. We used that last time to create

screen layers, and we need to now start using it’s collision checking function.

We’ll using the moving flags (isMovingLeft etc) to keep moving in a direction if the correct key is held

down.

We’ll need to get the size of the sprite as well. That’s what will be store in spriteHeight and

spriteWidth. So let’s add that function.

Notice the dotted line above it. I’ve started adding these to split the code up a bit to make it easier

to read. Pygame is providing the get_width and get_height functions. Sprite is really just a surface

as stored in Main.py in the initialiseCollisionMap function.

As all good code writing goes, it’s important to have get and set functions. For now we will need

them for the position of the player so let’s write these in.

Notice how I can pass parameters into and out of functions using the brackets. In the first function,

setPosition, is a passed in parameter. It comes in as one 2 dimension tuple (x,y) and so to access

each part I reference the [0]th and [1]st elements to get x and y out.

On sending the value back it needs to be sent back as a 2 dimensional tuple, so I surround the

attributes xPos and yPos in round brackets.

The next one is quite complicated and deals with the collision code, so we will step through it a piece

at a time. Let’s handle the LEFT movement first.

This function takes in a pointer to colMap which was loaded last lesson. colMap has it’s own

functions, one of which we want is called isColliding, which takes a set of coordinates and converts

them to map coordinates. If there is a collision cube (the red squares) there it return True. We

want to stop the player from moving towards collision regions so we only let them move if there is

not collision in the next step they take.

Notice also the two sets of isColliding settings. We need to check to the top and bottom of the sprite

so none of the sprite can get in a collidable region.

Now it’s time to add the Right code...

This code check to the right of the player.

Now type in the Up code...

And finally the Down code...

Updating the Main file
We need to fire off these events from Main.py so save this file and open Main.py

At the top of Main.py we need to add a few lines to import the player class and assign one player

class.

Directly after that we want to define all our globals for use in the rest of the program...

Further down we will add the new player class. We also need to remember the collision map for use

when we check where the player can move.

Scroll down in to the initialiseCollisionMap function. At this line to allow for global variables to be

used here.

 Next find this spot to include a call to tell the player class where it should be placed in the world,

and what the sprite is so we can use is size to test if the sprite has collided with objects.

Scroll further down to handlePlayer, add playerClass to the global list, and include a few lines above

the existing code to allow movement of the player if we have set the movement flags such as

isMovingLeft previously defined in the player class.

Finally we can detect the key presses on DOWN and UP to set up the movement flags. We’ll do the

DOWN key presses first.

And finally the UP presses. We do this be we want the player to continue moving in a direction until

the key is released.

Okay! Time to see the game running. Save your work and press the Play/Run button. You should be

able to move around now and not run over the red squares using the WASD keys.

Now let’s see it full screen. Press ESC and scroll up to the top of the Main.py file and change this line

to true...

Save the file, hit Run and the screen will go full screen, and the collision map won’t be visible. It’s

useful to have the choice to toggle between debug mode and release mode when we are building

the game.

Adding your own art.
You’ll notice some cases where you shouldn’t be able to walk into a tree, or you can’t get close

enough. Now it’s time for your mad art skilz!

Let’s make our own collision maps, find a new spot for the player, and paint some new artwork.

It’s also time to do some game design so write a one paragraph document on what you want your

RPG to be, which will then dictate your art style.

Resources:
1) Python 2.5 (http://www.python.org/download/releases/2.5.5/)

2) PyGame for Python 2.5 (http://www.pygame.org/download.shtml)

3) Eclipse (http://www.eclipse.org/downloads/download.php?file=/eclipse/downloads/drops/R-

3.5.2-201002111343/eclipse-SDK-3.5.2-win32.zip)

4) PyDev (http://sourceforge.net/projects/pydev/)

(just for my reference - don't download) Tutorials:

http://www.vogella.de/articles/Python/article.html#configuration

GLU-IT (http://www.downloadsofts.com/download/Graphic-Apps/Editors/Glue-Sprites-download-

details.html)

AUDACITY (http://audacity.sourceforge.net/download/)

http://www.python.org/download/releases/2.5.5/
http://www.pygame.org/download.shtml
http://www.eclipse.org/downloads/download.php?file=/eclipse/downloads/drops/R-3.5.2-201002111343/eclipse-SDK-3.5.2-win32.zip
http://www.eclipse.org/downloads/download.php?file=/eclipse/downloads/drops/R-3.5.2-201002111343/eclipse-SDK-3.5.2-win32.zip
http://sourceforge.net/projects/pydev/
http://www.vogella.de/articles/Python/article.html#configuration
http://www.downloadsofts.com/download/Graphic-Apps/Editors/Glue-Sprites-download-details.html
http://www.downloadsofts.com/download/Graphic-Apps/Editors/Glue-Sprites-download-details.html
http://audacity.sourceforge.net/download/

Tortoise SVN (http://downloads.sourceforge.net/tortoisesvn/TortoiseSVN-1.6.3.16613-win32-svn-

1.6.3.msi?download)

Python 2.0 Quick Reference

http://downloads.sourceforge.net/tortoisesvn/TortoiseSVN-1.6.3.16613-win32-svn-1.6.3.msi?download
http://downloads.sourceforge.net/tortoisesvn/TortoiseSVN-1.6.3.16613-win32-svn-1.6.3.msi?download
http://www.brunningonline.net/simon/python/quick-ref2_0.html

