Week2 Lecture: iPhone Games

Contents

(DT =4 0 I DT KT ol U 1] (o o F PPt 2
GAME CrEATION. Leiiiiiiiiii ittt sttt e e s a e e s bt e e s era s e e s eanee 2
ALMOGELS ..ttt sttt et e b e b e s be e s st e et e e beeabeesaeesanesanesaneebeenes 11

[Totdo VALY =1 d o To o [P SPR 12

FAN R A - (o1 o o R TP PR TUTUPPTI 12

[o= 1YV - 4 e Yo VO PSP 12
(0o Yo [T oY= UL =T |V F- 11 DU 14
AL MOGE] EQITOF ..ttt b et she e st ebe e s b e e saeesaeesatesabeebeenes 15
ONINTT COUR. ..ttt ettt b e s bt s bt e s ab e et e e bt e bt e s bt e saeesabeeabeeabe e bt enbeesneesaeeentean 17

Y T2V = I V=T 11 TSP 20

Design Discussion.

Okay onto the next bit. We will do a bit of coding. Scared yet? Don't be, it’s
incredibly easy. We need to code the background and foreground layers to scroll as
the player moves left and right to give the impression of speed and motion. We also
need to handle scrolling and looping the layers so they loop seamlessly.

SEleEnen

Here's the scene as we had it from last week. We have two layered back grounds and one space
ship.

In order to start controlling this we need to add LUA code.

Game Creation.

Firstly we need to create a Game. So load up ShiVa where you were before (click on Main-
>Settings) and change to the correct folder before you do this.

In the Game Editor click on Game->Create

Game. Edit Check

5| B create

Open or Drop a Game.

|
S
S
L
Q
£
[
(&

So now have done this, let’s have a look at what we need to fill out next.

Game Edit Check

Main S

Game Mame :

Application ID @ Oxddcaebef

User Main Als :

User Main Camera :

Game Editor

The red circled items are as follows.

e Scenes —we drop our scene(s) into this section. Because it can take more than one scene,
we can jump from scene to scene per level if we want to.

e Models — all the models required for all scenes added to the Game

e Resources — everything else, HUD's, graphics, materials.

e User Main Als — all the LUA modules we will create that need to have access for the user. In
general we only have to put one in here.

e User Main Camera — of all the cameras created, drop on in here for control during the game.

Let’s start by making a User Main Al.
In the Game Editor, click on Edit->User Main Al->Create

Game

S8 | Main

User Main Als :

Call it Wk1Shooter_AlUser

Create =]

Enter a AlModel name :

wooter_ATUser|

oK

Now let’s add a camera by going to the Data Explorer and clicking on Create->Model->Camera-
>Simple.

Files Display Create. Import Bxport Tools

Resource

HeightMaps Reflector

HUD & Projector

Materials Shape

Camera Simple
Light With Head Light

Data Explorer

Call it Wk1Shooter_Cam1

Create =

Enter a Madel name :

Shoaoter_Cam1

oK Cancel

Scroll down to Scenes in the Data Explorer to display the Scene (don’t click on it yet). Go over to the
Game Editor and change the top tab to Scene, then drag that scene over to the Scene tab in the
Game Editor now open.

Game Edit Check iles Display Create Import Bwport Tor

File Nam
% Wk1_ShooterScene

ol
Sound

Sounds

Data Explorer

Now double click on the Scene in the Game Editor side...

You should have a set up like this now.

Main D 0 e Code Preview Animati

SoundBank Edit

Open or Drop a SoundBank.

SoundBank Edi
Scene Viewer

Game Edit ? Display Create Import Export Tools

Scenes
File Name Size Date
S Wk1_ShooterScene 2 KB 24/07/20...

Drag'n drop here scenes of the game.
Name Loaded

W Wk1_ShooterS

b
2
=
Lo

[}

=

5]
O

Seféction. WY

Files Display Create Import Export Tools

File Name

§ DefaultDirectionnalli...
§ DefaultDynamicLight...
§ DefaultStaticLightSet 0 KB 13/04/2
§ Wki_Background 0 KB 10/07/20...
§ Wki_foreground f KB 10/07/20...

Wk1_Shooter 0 KB 10/07/20...
§ WkiShooter_Cam1 0 KB 24/07/20...

nBanks
mClips
Fonts
HeightMaps
HUD

Materials

We may as well assign this camera as the main camera for the Game, but you don’t always want to
do this. Let’s do this by clicking on the Main tab in the Game Editor and dragging the
Wk1Shooter_Cam we just dragged into the scene, but this time drag it over to the edit box at the
bottom that says User Main Camera.

Game Edit Check Se Files Display Create Import Export
]

H M wki File Name
Game Name : B Games

§§ Main | Sra

W DefaultDirectionnalli...
Application ID : Ox4ddcaesef = Models W DefaultDynamicLight...
W DefaultStaticLightSet
W Wk1 Background
[— W Wki_foreground
Fonks W Wk1 shooter
Heightall W8 Wx1Shooter Cami

User Main Als : (@ wi
AnimBank:

User Main Camera :

Game Editor
IBUEEEEEEDR

Now click in Scene Viewer, click on Display->Cameras and right click to select Wk1Shooter_Cam1 as
the active camera. The scene will flick around, so you’ll need to set up the camera.

pundBank Edit Scene Edit oBisplay. Selection Tools

Scene Carneras Hide All But Selection
Show All
U OVi Layers
Wk1Shooter_Cam1 Cameras
Object niter

1 % Navigation Points

Create Camera

Scene Cameras =

Active

SlEE T Set as Active Camera

Create Camera

Close that screen and select the Attribute Editor on the left hand side.

Now change the camera translation and rotation to this.
Common Attributes

Identity

Mame : WkiShooter_Cami

Model Name :
Type:
Parent :

TRS

Translation :

Rotation :
Scale : 1.000

Shear :

Look at :

TRS Flags

™ Affected by Parent Rotation

You should have a scene like this now.

Change to Design view and in the Scene Explorer delete DefaultCam and Unknown cam if they are
there.

Display Selection

Objects ' Models

<o
w e
w e
w e
w e
w e
w e

J' General Design Code Preview

Material Edit

| .
g
e
o
=
L]
Q
@
L
wn

Wk1Shooter_Cami,

Edit Selection Tag

Visibility
Transform

Model

Attributes

Controllers

Delete Selection

Name it Scenel_Caml.

Edit (3

Enter a tag for this object:

Scenel Cami

Ok

Then right click on the Wk1_Shooter(1) and select Edit Selection Tag.

Edit Selection Tag

Visibility

Transform
Model
Attributes
Contraollers

k1 fof *° Delete selection

Whk1_Shooter (1)

Then name it Scenel_Player

Edit

Enter a tag for this object:

Scenel_Player

OK

Left click on the Wk1_foreground(3) first then SHIFT+Left click on Wk1_foreground(1) last, then right
click and Group Selection.

Objects Models RESOUTL Y Group Selection

Visibility

Transform

w Maodel

L g ik g Attributes
w Vk] g Controllers
u“ MIEACEAT o pelete Sel
g Wk1_foregrote———

e g Wk1_foreground (2)

L g Wk1_foreground (3)

ection

Change the settings to Parent to last Selected Object

Group Options... =]

Parent to a new object
[]

™ Parent to last selected object

Cancel

Do the same for Wk1_background(3) to (1)

Group Selection

Visibility
Transform
Model
Attributes

Controllers

Delete Selection

Group Options...]

Parent to a new object
[]

™ Parent to last selected object

Cancel

Now right click on Wk1_Background(1) and select Edit Selection Tag.

%% Ungroup Selection
Edit Selection Tag

Display Selection Visibility
Transform

Objects

Model

Attributes

Controllers

k1shooter_Cf «* pelete Selection

Whk1_Background i)
Wk1_Background... ™
Wk1_Background... ™

Name it Scenel_Background

Edit (3

Enter a tag for this object:

Scene1_Background

Ok

Then right click on Wk1_Foreground(1) and select Edit Tag Selection.

%+ Ungroup Selection
Edit Selection Tag
Visibility
Transform
Model

Attributes

Controllers

= Delet
Whk1_foregrouna (1,
Wki_foreground ... ™
Wk1_foreground ... ™

Name it Scenel_Foreground.

Edit (3]

Enter a tag for this object:

Scenel_Foreground

Ok

Okay all set to code.

Al Models

Al Models are pretty much a module that is a collection of LUA scripts batched together for one
purpose. But don’t even think of it like that. Think of an Al Model as the object code for your game.
| tend to make a main one like we have as seen above in the User Main Al (Game Editor) to drive the
game and separate ones for each object type such as the main character, alien generator, bullet
generator etc.

This is where we want to focus on Object Oriented coding.

Factory Methods.

Even though the design pattern (ways to rethink coding to make it more efficient) for Factories is as
WiIkiPedia explains it below | take a slightly different approach.

The factory method pattern is an object-oriented design pattern to implement the concept of
factories.

Like other creational patterns, it deals with the problem of creating objects (products) without
specifying the exact class of object that will be created. The factory method design pattern
handles this problem by defining a separate method for creating the objects, which subclasses
can then override to specify the derived type of product that will be created.

Outside the scope of design patterns, the term factory method can also refer to a method of a
factory whose main purpose is creation of objects.

(‘http://en.wikipedia.org/wiki/Factory method pattern)

We will use it more like the final statement. For example we will want to create aliens at some
point, and we want to do it simply in the final abstracted code. Something like...

generateAlien(x, vy, 2z, type, image)

And that’s as complex as we want to get. Of course we have to write the core code below that, the
factory method and the object instance code but we only do that once.

Abstraction.
I've introduced another concept of object oriented coding here called abstraction. From WikiPedia...

In computer science, the mechanism and practice of abstraction reduces and factors out details so

that one can focus on a few concepts at a time.

(http://en.wikipedia.org/wiki/Abstraction %28computer science%29)

So in the instance of the alien generation problem, we know at the end of the day in our game code
we want to just “generate an alien”. How we make this a possibility is to create a function called
something similar to that to abstract the internal complexity away from the problem at hand. We
don’t care that it takes a sprite, some internal registers, a bunch of drawing calls, and perhaps some
sound control too —we JUST WANT AN ALIEN.

Encapsulation.

Factories also introduce the object oriented coding term Encapsulation. Factory methods
encapsulate the creation of objects. This can be useful if the creation process is very complex, for
example if it depends on settings in configuration files or on user input.

From WikiPedia...

e Alanguage mechanism for restricting access to some of the object's components.24

http://en.wikipedia.org/wiki/Object-oriented
http://en.wikipedia.org/wiki/Design_pattern_%28computer_science%29
http://en.wikipedia.org/wiki/Factory_%28software_concept%29
http://en.wikipedia.org/wiki/Creational_pattern
http://en.wikipedia.org/wiki/Object_%28computer_science%29
http://en.wikipedia.org/wiki/Class_%28computer_science%29
http://en.wikipedia.org/wiki/Method_%28computer_science%29
http://en.wikipedia.org/wiki/Subclass_%28computer_science%29
http://en.wikipedia.org/wiki/Derived_type
http://en.wikipedia.org/wiki/Factory_%28software_concept%29
http://en.wikipedia.org/wiki/Factory_method_pattern
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Abstraction_%28computer_science%29
http://en.wikipedia.org/wiki/Object_%28computer_science%29
http://en.wikipedia.org/wiki/Encapsulation_%28object-oriented_programming%29#cite_note-2
http://en.wikipedia.org/wiki/Encapsulation_%28object-oriented_programming%29#cite_note-2

e Alanguage construct that facilitates the bundling of data with the methods operating on
that data.2!

Programming language researchers and academics generally use the first meaning alone or in
combination with the second as a distinguishing feature of object oriented programming. The

second definition is motivated by the fact that in many OOP languages hiding of components is not
automatic or can be overridden; thus information hiding is defined as a separate notion by those

who prefer the second definition.

As information hiding mechanism

Under this definition, encapsulation means that the internal representation of an object is
generally hidden from view outside of the object's definition.

(http://en.wikipedia.org/wiki/Encapsulation %28object-oriented programming%29,

http://en.wikipedia.org/wiki/Information hiding)

So what does this mean to us? It means we generate don’t hack around with the internal registers
manually; we use the class public methods to do this.

For an example of information hiding, | have an object ALIEN. It has an internal register (or attribute
— object oriented version of variable) called xPos. | could quite easily go...

ALTIEN.xPos = 100

But as a responsible programmer, what | would do to stop people hacking this around is make the
xPos attribute private so it couldn’t be accessed externally. This generates an exception (or error)
pretty much telling the programmer “hey back off man, don’t be messing with my internal data like
that”.

We should be nice though and provide a public (available to anyone) method (object oriented
version of function)

function GetPositionX()
return this.xPos /()
end
And to be fair we should also add a set method...
function SetPositionX(position)
this.xPos(position)
end

So to now legally access the object we can do this..

http://en.wikipedia.org/wiki/Encapsulation_%28object-oriented_programming%29#cite_note-4
http://en.wikipedia.org/wiki/Encapsulation_%28object-oriented_programming%29#cite_note-4
http://en.wikipedia.org/wiki/Object_oriented_programming#features
http://en.wikipedia.org/wiki/Information_hiding
http://en.wikipedia.org/wiki/Object_%28computer_science%29
http://en.wikipedia.org/wiki/Encapsulation_%28object-oriented_programming%29
http://en.wikipedia.org/wiki/Information_hiding

ALTEN.SetPositionX(100)
In ShiVa however we don’t really write code like that (except for the get and set methods)
We would write something like...

object.sendEvent (application.getCurrentUser, “AlienAl”,
“setPosition”, 100)

It’s also to future-proof the object code, so if | decide to change its name to xPosition, the calling
code still works because | just change all references to xPos manually and the outside code does
care, ie SetPosition will still work.

Coding User Main

Now that we know all that, we can be reasonable certain about the way we should design our code.
We’'ll start with the Wk1Shooter_AlUser module.

At the top right of the screen click on Code.

M J’ General Desicn | Code Freview Animation

On the left hand side of the screen we can now see the Al Model Editor. Click on the big icon to
Open and AlModel, and select Wk1Shooter_AlUser...

[
S
=]
L
o]
=]

O

7

Now, to have some action occur at the loading of the Al Model, you need to amend the “onlnit
function. To do this you need to access the “Handler” for the Al Model, by left-clicking on the
“+” next to “Add Handler...” under the “[Handlers]” heading, and navigating to the “onlnit”
Handler:

AlModel View Edit

Shooter_ATlser

.

[Variables]
* Add Variable

[Functions]

+ Add Function

[Sstates]

+* 47
stom...
onlnit
onEnterFrame
User Handler

Object Handler

AlModel Editor

“Handlers” are just another term for a specific type of Script that “Handles” some Event, in this case
the “onlnit”, or “On Initialisation” Event. Once you've clicked on the “onlnit” Handler, you will see
that the Handler has been added below the “[Handlers]” heading in the AIModel Editor, and also
that the Script has been opened in the Script Editor. If you can't see the Script Editor, open it up

now.

In the Script Editor, you will notice that a dummy Script has been opened up for you. This Script has
a header that allows you to put in your name and the description of the Script, and also a preformed
body that has one Function — Wk1Shooter_AlUser.onlnit. Note that the name of this Function is
taken from the Al Model's name (Wk1Shooter_AlUser) and the selected Handler (onlinit).

Edit Search Build Wi

ser_Handler_onInit

v
o
B 1
2 — Handler.......... : onInit
[—— BUthOT.....v..... E
4 —— Description...... :
3
[
7
8 function WklShooter ATUser.onInit ()
9
10
11 ==
12 —— Write your code here, using 'this' as current AT instance.
13 —— This handler is called once, at AT instance initialization.
14 ==
15
16
17 end

It is VERY IMPORTANT that you do not change anything other than lines beginning with “--” or blank
lines. If you do, the chances are that your Script will not work.

Al Model Editor

AIModel View Edit ? The AlModel Editor module allows you to edit AIModel
HLDVisitCamera resources. An AlModel is a behavioural model that can be
» - attached to an Object or to a User. Once attached to an
{Varables] Object, the initial values of the Variables of the AIModel
can be overridden in the Al Attributes section of the

oFo d
hpﬂtamz;t Attributes Editor. As a result, different behaviours can be
bRotateRight created using the same AlModel.

bStrafel eft
:g”agf"g:t Basically, the AIModel Editor allows you to define
JynObjed
Variables, Functions and Handlers, configure Variables

nCurfAngleH
X for the designer view, search and compile.
nCurHeight

nDstAngleH
nDstAngleV
nDstHeight
[Functions]

*
-~
o
-~
»
»
»
n
2
-~
»
»
»
»

e()
Object ()
»~ registerTriggers ()
[states]
* Add

onEnterFrame {)

onlnit ()

onlnit Code

What do we want in onlnit? Well anything basically that happens once because it will never come
back in here unless we explicitly call it. | have a bunch of things | also put in there so you may as well
too. Grab this code from Blackboard under (week 2)

Create games for mobile phones and PDAs [22893 | -]

function WklShooter AIUser.onInit (¥

application.setOption (application. 0} —— default handset wview
if (system.getOSType (} = system. } then
application.setOption (application. P 3} —-— turn device counterclockwise (common)
end
—— load ocur first scene
application.setCurrentUserScene ('Wkl ShooterScene')

—— set up the camera

local caml = scene.getTaggedObiject (application.getCurrentUserScens {), Scenel Caml)
application.setCurrentUserActiveCamera {(caml)

—— adjust the W

ng distance
camera.setField0OfView (caml, 22)
—— load assets and save data

this. ()

this.)

—— refresh network
network.disconnect ()

First of all it sets up the screen, and then if we are running this on an iPhone (iPod/iPad) it rotates
the screen for us. This kind of adaptive programming is important when we are developing on PC
and deploying to iPhone. It means we can see the screen the right way on both devices.

The second set of code sets the scene used to the be the one we created before called
“Wk1_ShooterScene”.

Next it sets up a local pointer to the scene camera and sets it’s field of view, also making it the active

camera.

Then it runs two functions loadEverthing and loadEnvironment —we will have to write
these. They should be purple when the interpreter finds them in the module.

Finally we force a network disconnect because we may have been connected online last time, had a
crash and we need to re-establish a link again.

For now we will create code stubs for loadEverthing and loadEnvironment.

Click on +Add Function under [Functions] in the AIModel Editor, and create a function called
loadEverything...

v

1 o
= g8
© =

[States j
+ Add State
[Handlers]

* A

onlnit Name: loadEverything|

0K

Next click on +Add Function under [Functions] in the AIModel Editor, and create a function called
loadEnvironment...

[Functions]
+ 4 .
#* loadEverything
[states]

[Handlers]

* Add Handle Name : loadEnvironment|

£ onlnit

Cancel

Little trick — now open onlnit again, remove the space between the first bracket after loadEverything
and the two function will turn purple — they are now value methods (they were before the trick —
just sometimes the script buffers don’t show it).

#* loadEverything - | Tt
F application.setCurrentlUser
[states]

- he camera

local caml = .getTagc
application.=setCuar
—— adjust the wviewin
camera.setField0fVie
—— load assets and s
thiz.loadEverything ()
this.loadEnvire I

Main 5 o M g g B nvironment S —— refresh network

network.disconnect ()

Game

Hit space again to neaten it up.

Let’s just run it to make sure it all works. Just for fun put this at the bottom of the onlinit function —
we will remove this soon.

log.message (“hello world”)

Now you must compile all scripts by pressing F7. If all goes well you should see something in the
Output window.

So now we are ready to run it. At the top of the screen is a play button. Hit it.

Il'lg? B J" General Desi

| .
)
=
0
—
o))
=
(¢
()
(V)]

Change the Script Editor to Log Reporter and you will see the hello world printed to the log.

L]
i]
L]
i]
L]
i]
L]
Li
L]
i]
o -
i

It all seems to work so ready to move the ship?

Moving The Ship

The plan is to move the ship, and move everything else as a function of the ship.

Eventually it will be cool to introduce camera lag so the camera has to catch up to the ship but we’ll
do that later. For now, add a new event called onEnterFrame.

Custom...
onlnit
onEnterFrame

User Handler

Object Handler

Mame : handleship|

[Handlers]

& A7

Cancel

Add a handler called onKeyBoardDown

[Handlers]

Custom...

onlnit

onEnterFrame

User Handler * onfpplicationWillQuit

Object Handler onMouseMove

onMouseWheel
onMouseButtonDown

onMouseButtonlp

Display
onkKeyboardKeyDown

onkKeyboardeylUp
Add another handler called onKeyboardUp

[Handlers]
Custom...

onlnit

onEnterFrame

User Handler F ondpplicationWill Quit

Object Handler onMouseMove

onMouseWheel

onMouseButtonDown

onMouseButtonlUp
Display onKeyboardke

onkeyboardkKeylUp

Developer
MName
Type

[States]
+ Add S Init Value

object
[Handlers] string

Description 'EahIE_
hashtable

xml

Then add nYPosition as well.

[variables]
* ;

Developer

Name

Type

lean
Init Value number
object

Variable =
Developer Designer
ET bMavingLeft M Pablich
TYPe boolean
Init Value false

Description

Variable]
Developer Designer

Name ingRight L

Type boolean

Init Value false

Description

Add a variable called nForegroundX...

Developer Designer

Name nForegro Publish

View Default
Type number

Init Value

Description

Add a variable called nBackground X

Variable =]

Developer Designer

™ Publis
Mame nBadkgroundX Publish

View Default
TYPe number

Init Value

Description

Finally add a variable called nDirection and set it to 1

Variable 5]
Developer Designer
[e—
Name nDirectio Publish
Default
TyPe number

Init Value 1]

Description

Double click on onEnterFrame in the Al Model Editor and enter handleShip() as below

1 o -
2 —-— Handler.......... onEnterFrame
3 —— Author...........
4 —— Descriptiol......
5 __
[
gl | -—_-—
8 function WklShooter AlUser.onEnterFrame ()
9 __
LD
11 this {)
L2
x| -——-—
L4 end
s -—-—
| &

Now double click on the handleShip function and paste the code from this file “handleShip”
Grab this code from Blackboard under (week 2)

Create games for mobile phones and PDAs [22893 | -]

if (this.bMovingleft ())

then
this.nXPosition { this.nXPosition ()} + 0.05)
thia.nForegroundi({ this.nForegroundi () — {0.05 * 0.75))
thia nBackgroundX{ this nBackgrounddX (} — (0.05 * 0_05})

end

if (this.bMovingRight ())

then
this.nXPosition { this.nXPosition ()} - 0.05)
thia.nForegroundi({ this.nForegroundi () + {0.05 * 0_.75))
thia._nBackgroundX{ this nBackgrounddX (} + (0.05 * 0_05})

end

local scn = application.getCurrentUserScens ()
lacal player = acene. getTaggedDbject (scn, 'Scenel Player')

local sX, 3¥, sZ = object.getScale [player)
local pX, pY¥Y, pZ = object.getTranslation (player, object_ kCl

—— adjust scale based on direction
if (thia.nDirection (J=1)
ther|
sK = -1
elae
sH

I
e

end
object.seticale (player, sX, s¥, 3Z)

—— move player

object.zetTranslation { player, this.nXPosition ({)}, p¥, pZ, object._kClchzlSpace)

—— then move camera to player position

local caml = scene.getTaggedlbject { sen, 'Scer

p¥, pY¥, pZ = object_getTranslation { caml, object.kC 15pace)
object. getTranslation { caml, thias.nXPosition (), p¥, pZ, object.kClob

—— adjust other layer using a paralax effect
lacal background = scene. getTaggedObject (scn, 'Scenel Bac

Background"' }
local foreground = scene.getTaggedObject (sem, 'Scenel F

reground®)

pX, p¥, pZ = object._getTranaslation (background, object.kClobalSpace)
object.zetTranslation (background, this.nBackgroundi({}, p¥, pZ, object.kCl

p¥, p¥, pZ = object._getTranaslation ([foreground, object.kClobalSpace)
object setTranslation (foreground, this nForegroundX (), p¥, pZ, object kil

Do the same for onKeyBoardDown and onKeyBoardUp (they are on Blackboard in the same location)

= i1f (kEeyCode =— inpmt.kEeyD and this.bMovingRight ()} = false)
then

this.bMovingLeft (false)

this.bMovingRight {(trme)

this.nDirection { 1)
end

= if (kEeyCode — input.kEeyvA
then
this.bMovingleft (trume)
this.bMovingRight (false)
this.nDirection { -1)

and this.bMovingleft () = false)

end

if (kEKeyCode =— input.]
then

this.bMovingRight (false)
end
if (kEeyCode =— inpmt.]
then

this.bMovingleft | false)|
end

Click in the Script, press F7 to compile and run the game.

Now you should be able to move left and right and the background and foreground scroll along. If
you go far left or right you outrun the scene boundary. We will work on that next week.

