
Week2 Lecture: iPhone Games

Contents
Design Discussion. ... 2

Game Creation. ... 2

AI Models .. 11

Factory Methods. .. 12

Abstraction. ... 12

Encapsulation. ... 12

Coding User Main .. 14

AI Model Editor ... 15

onInit Code .. 17

Moving The Ship ... 20

Design Discussion.

Okay onto the next bit. We will do a bit of coding. Scared yet? Don’t be, it’s
incredibly easy. We need to code the background and foreground layers to scroll as
the player moves left and right to give the impression of speed and motion. We also
need to handle scrolling and looping the layers so they loop seamlessly.

Here’s the scene as we had it from last week. We have two layered back grounds and one space

ship.

In order to start controlling this we need to add LUA code.

Game Creation.
Firstly we need to create a Game. So load up ShiVa where you were before (click on Main-

>Settings) and change to the correct folder before you do this.

In the Game Editor click on Game->Create

So now have done this, let’s have a look at what we need to fill out next.

The red circled items are as follows.

 Scenes – we drop our scene(s) into this section. Because it can take more than one scene,

we can jump from scene to scene per level if we want to.

 Models – all the models required for all scenes added to the Game

 Resources – everything else, HUD’s, graphics, materials.

 User Main AIs – all the LUA modules we will create that need to have access for the user. In

general we only have to put one in here.

 User Main Camera – of all the cameras created, drop on in here for control during the game.

Let’s start by making a User Main AI.

In the Game Editor, click on Edit->User Main AI->Create

Call it Wk1Shooter_AIUser

Now let’s add a camera by going to the Data Explorer and clicking on Create->Model->Camera-

>Simple.

Call it Wk1Shooter_Cam1

Scroll down to Scenes in the Data Explorer to display the Scene (don’t click on it yet). Go over to the

Game Editor and change the top tab to Scene, then drag that scene over to the Scene tab in the

Game Editor now open.

Now double click on the Scene in the Game Editor side...

You should have a set up like this now.

In the Data Explorer, scroll up and click on Models. Then drag the Wk1Shooter_Cam into the scene.

We may as well assign this camera as the main camera for the Game, but you don’t always want to

do this. Let’s do this by clicking on the Main tab in the Game Editor and dragging the

Wk1Shooter_Cam we just dragged into the scene, but this time drag it over to the edit box at the

bottom that says User Main Camera.

Now click in Scene Viewer, click on Display->Cameras and right click to select Wk1Shooter_Cam1 as

the active camera. The scene will flick around, so you’ll need to set up the camera.

Close that screen and select the Attribute Editor on the left hand side.

Now change the camera translation and rotation to this.

You should have a scene like this now.

Change to Design view and in the Scene Explorer delete DefaultCam and Unknown cam if they are

there.

Right click on the Wk1Shooter_Cam1 in the Scene Explorer and click on Edit Tag Selection

Name it Scene1_Cam1.

Then right click on the Wk1_Shooter(1) and select Edit Selection Tag.

Then name it Scene1_Player

Left click on the Wk1_foreground(3) first then SHIFT+Left click on Wk1_foreground(1) last, then right

click and Group Selection.

Change the settings to Parent to last Selected Object

Do the same for Wk1_background(3) to (1)

Now right click on Wk1_Background(1) and select Edit Selection Tag.

Name it Scene1_Background

Then right click on Wk1_Foreground(1) and select Edit Tag Selection.

Name it Scene1_Foreground.

Okay all set to code.

AI Models
AI Models are pretty much a module that is a collection of LUA scripts batched together for one

purpose. But don’t even think of it like that. Think of an AI Model as the object code for your game.

I tend to make a main one like we have as seen above in the User Main AI (Game Editor) to drive the

game and separate ones for each object type such as the main character, alien generator, bullet

generator etc.

This is where we want to focus on Object Oriented coding.

Factory Methods.

Even though the design pattern (ways to rethink coding to make it more efficient) for Factories is as

WIkiPedia explains it below I take a slightly different approach.

The factory method pattern is an object-oriented design pattern to implement the concept of

factories.

Like other creational patterns, it deals with the problem of creating objects (products) without

specifying the exact class of object that will be created. The factory method design pattern

handles this problem by defining a separate method for creating the objects, which subclasses

can then override to specify the derived type of product that will be created.

Outside the scope of design patterns, the term factory method can also refer to a method of a

factory whose main purpose is creation of objects.

(http://en.wikipedia.org/wiki/Factory_method_pattern)

We will use it more like the final statement. For example we will want to create aliens at some

point, and we want to do it simply in the final abstracted code. Something like...

generateAlien(x, y, z, type, image)

And that’s as complex as we want to get. Of course we have to write the core code below that, the

factory method and the object instance code but we only do that once.

Abstraction.
I’ve introduced another concept of object oriented coding here called abstraction. From WikiPedia...

In computer science, the mechanism and practice of abstraction reduces and factors out details so

that one can focus on a few concepts at a time.

(http://en.wikipedia.org/wiki/Abstraction_%28computer_science%29)

So in the instance of the alien generation problem, we know at the end of the day in our game code

we want to just “generate an alien”. How we make this a possibility is to create a function called

something similar to that to abstract the internal complexity away from the problem at hand. We

don’t care that it takes a sprite, some internal registers, a bunch of drawing calls, and perhaps some

sound control too – we JUST WANT AN ALIEN.

Encapsulation.
Factories also introduce the object oriented coding term Encapsulation. Factory methods

encapsulate the creation of objects. This can be useful if the creation process is very complex, for

example if it depends on settings in configuration files or on user input.

From WikiPedia...

 A language mechanism for restricting access to some of the object's components.[3][4]

http://en.wikipedia.org/wiki/Object-oriented
http://en.wikipedia.org/wiki/Design_pattern_%28computer_science%29
http://en.wikipedia.org/wiki/Factory_%28software_concept%29
http://en.wikipedia.org/wiki/Creational_pattern
http://en.wikipedia.org/wiki/Object_%28computer_science%29
http://en.wikipedia.org/wiki/Class_%28computer_science%29
http://en.wikipedia.org/wiki/Method_%28computer_science%29
http://en.wikipedia.org/wiki/Subclass_%28computer_science%29
http://en.wikipedia.org/wiki/Derived_type
http://en.wikipedia.org/wiki/Factory_%28software_concept%29
http://en.wikipedia.org/wiki/Factory_method_pattern
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Abstraction_%28computer_science%29
http://en.wikipedia.org/wiki/Object_%28computer_science%29
http://en.wikipedia.org/wiki/Encapsulation_%28object-oriented_programming%29#cite_note-2
http://en.wikipedia.org/wiki/Encapsulation_%28object-oriented_programming%29#cite_note-2

 A language construct that facilitates the bundling of data with the methods operating on
that data.[5][6]

Programming language researchers and academics generally use the first meaning alone or in

combination with the second as a distinguishing feature of object oriented programming. The

second definition is motivated by the fact that in many OOP languages hiding of components is not

automatic or can be overridden; thus information hiding is defined as a separate notion by those

who prefer the second definition.

As information hiding mechanism

Under this definition, encapsulation means that the internal representation of an object is
generally hidden from view outside of the object's definition.

(http://en.wikipedia.org/wiki/Encapsulation_%28object-oriented_programming%29,

http://en.wikipedia.org/wiki/Information_hiding)

So what does this mean to us? It means we generate don’t hack around with the internal registers

manually; we use the class public methods to do this.

For an example of information hiding, I have an object ALIEN. It has an internal register (or attribute

– object oriented version of variable) called xPos. I could quite easily go...

ALIEN.xPos = 100

But as a responsible programmer, what I would do to stop people hacking this around is make the

xPos attribute private so it couldn’t be accessed externally. This generates an exception (or error)

pretty much telling the programmer “hey back off man, don’t be messing with my internal data like

that”.

We should be nice though and provide a public (available to anyone) method (object oriented

version of function)

function GetPositionX()

return this.xPos()

end

And to be fair we should also add a set method...

function SetPositionX(position)

 this.xPos(position)

end

So to now legally access the object we can do this..

http://en.wikipedia.org/wiki/Encapsulation_%28object-oriented_programming%29#cite_note-4
http://en.wikipedia.org/wiki/Encapsulation_%28object-oriented_programming%29#cite_note-4
http://en.wikipedia.org/wiki/Object_oriented_programming#features
http://en.wikipedia.org/wiki/Information_hiding
http://en.wikipedia.org/wiki/Object_%28computer_science%29
http://en.wikipedia.org/wiki/Encapsulation_%28object-oriented_programming%29
http://en.wikipedia.org/wiki/Information_hiding

ALIEN.SetPositionX(100)

In ShiVa however we don’t really write code like that (except for the get and set methods)

We would write something like...

 object.sendEvent(application.getCurrentUser, “AlienAI”,

“setPosition”, 100)

It’s also to future-proof the object code, so if I decide to change its name to xPosition, the calling

code still works because I just change all references to xPos manually and the outside code does

care, ie SetPosition will still work.

Coding User Main
Now that we know all that, we can be reasonable certain about the way we should design our code.

We’ll start with the Wk1Shooter_AIUser module.

At the top right of the screen click on Code.

On the left hand side of the screen we can now see the AI Model Editor. Click on the big icon to

Open and AIModel, and select Wk1Shooter_AIUser...

Now, to have some action occur at the loading of the AI Model, you need to amend the “onInit”

function. To do this you need to access the “Handler” for the AI Model, by left-clicking on the

“+” next to “Add Handler…” under the “*Handlers+” heading, and navigating to the “onInit”

Handler:

“Handlers” are just another term for a specific type of Script that “Handles” some Event, in this case

the “onInit”, or “On Initialisation” Event. Once you've clicked on the “onInit” Handler, you will see

that the Handler has been added below the “*Handlers+” heading in the AIModel Editor, and also

that the Script has been opened in the Script Editor. If you can't see the Script Editor, open it up

now.

 In the Script Editor, you will notice that a dummy Script has been opened up for you. This Script has

a header that allows you to put in your name and the description of the Script, and also a preformed

body that has one Function – Wk1Shooter_AIUser.onInit. Note that the name of this Function is

taken from the AI Model's name (Wk1Shooter_AIUser) and the selected Handler (onInit).

It is VERY IMPORTANT that you do not change anything other than lines beginning with “--” or blank

lines. If you do, the chances are that your Script will not work.

AI Model Editor

The AIModel Editor module allows you to edit AIModel

resources. An AIModel is a behavioural model that can be

attached to an Object or to a User. Once attached to an

Object, the initial values of the Variables of the AIModel

can be overridden in the AI Attributes section of the

Attributes Editor. As a result, different behaviours can be

created using the same AIModel.

Basically, the AIModel Editor allows you to define

Variables, Functions and Handlers, configure Variables

for the designer view, search and compile.

onInit Code
What do we want in onInit? Well anything basically that happens once because it will never come

back in here unless we explicitly call it. I have a bunch of things I also put in there so you may as well

too. Grab this code from Blackboard under (week 2)

Create games for mobile phones and PDAs [22893|-]

First of all it sets up the screen, and then if we are running this on an iPhone (iPod/iPad) it rotates

the screen for us. This kind of adaptive programming is important when we are developing on PC

and deploying to iPhone. It means we can see the screen the right way on both devices.

The second set of code sets the scene used to the be the one we created before called

“Wk1_ShooterScene”.

Next it sets up a local pointer to the scene camera and sets it’s field of view, also making it the active

camera.

Then it runs two functions loadEverthing and loadEnvironment – we will have to write

these. They should be purple when the interpreter finds them in the module.

Finally we force a network disconnect because we may have been connected online last time, had a

crash and we need to re-establish a link again.

For now we will create code stubs for loadEverthing and loadEnvironment.

Click on +Add Function under [Functions] in the AIModel Editor, and create a function called

loadEverything...

Next click on +Add Function under [Functions] in the AIModel Editor, and create a function called

loadEnvironment...

Little trick – now open onInit again, remove the space between the first bracket after loadEverything

and the two function will turn purple – they are now value methods (they were before the trick –

just sometimes the script buffers don’t show it).

Hit space again to neaten it up.

Let’s just run it to make sure it all works. Just for fun put this at the bottom of the onInit function –

we will remove this soon.

 log.message(“hello world”)

Now you must compile all scripts by pressing F7. If all goes well you should see something in the

Output window.

So now we are ready to run it. At the top of the screen is a play button. Hit it.

I got this view first run.

Change the Script Editor to Log Reporter and you will see the hello world printed to the log.

It all seems to work so ready to move the ship?

Moving The Ship
The plan is to move the ship, and move everything else as a function of the ship.

Eventually it will be cool to introduce camera lag so the camera has to catch up to the ship but we’ll

do that later. For now, add a new event called onEnterFrame.

Add a function called handleShip

Add a handler called onKeyBoardDown

Add another handler called onKeyboardUp

Add a variable called nXPosition, and make it a number type.

Then add nYPosition as well.

Add a variable called bMovingLeft, make it a Boolean and set it to false.

Then make a variable called bMovingRight, make it a Boolean and set it to false.

Add a variable called nForegroundX...

Add a variable called nBackground X

Finally add a variable called nDirection and set it to 1

Double click on onEnterFrame in the AI Model Editor and enter handleShip() as below

Now double click on the handleShip function and paste the code from this file “handleShip”

Grab this code from Blackboard under (week 2)

Create games for mobile phones and PDAs [22893|-]

Do the same for onKeyBoardDown and onKeyBoardUp (they are on Blackboard in the same location)

Click in the Script, press F7 to compile and run the game.

Now you should be able to move left and right and the background and foreground scroll along. If

you go far left or right you outrun the scene boundary. We will work on that next week.

