XNA Programming Lecture 5

Contents
INEFOAUCTION .ttt sttt ettt e bt e s bt e s bt e sat e st e et e e b e e beenbeesmeesaneeneeen 1
DESIEN DiSCUSSION. .ceiiiiiiiiiiiiiieee e e ettt e e e e e ettt e e e e e s s bbbt e eeeeesesauabebaeeeesssaaasbeaeeeeesesanassraaeeesssssannsnnes 2
LN =AY o T o 1= ot AP PP PP P PP PPUPPPPIIRE 4
Y- T [T oY= o T L =L PP UR 5
DiSPlayiNg the SCENE.ooiiiiiie e e et e e e et a e e e et e e e e e abe e e e enbaeesenbaeesenrenas 8
(0] oo Z=Y= o T DT o] - 1Y U UP SRRt 9
1Yo o g o o T=IY T o @ = 1T 13
DESIEN DiSCUSSION. .eeiiiiieiiiiiiiitieeeeeeeititte et e e s e s sttt e e e e s e s sabeateeeeessssassbasaaaeesssasasnsesaaeeesssnsssnrenaaeeesssnnns 13
1Y 011NV =38 o T 3PP 16
o 012 ot 0 PSP 17
DraWing the SHIP. .eeeei e e e et e e e e et e e e e e be e e e e abee e e eeabaeeeennbaeeeenrenas 20
IMPIEMENTING SHIPCIASSL.....oviii et e et e e e e bee e e et ee e e esabaeeeeenbaeeeennrenas 21
g o LU PPNt 22
(UL oY oY o = d o TSI 2 s o =TSP 23

Introduction

First off grab this zip file from Blackboard, or my website , make a new folder on your hard drive
called XNA_Week5 and unpack it to the folder.

My website:

http://drewfx.com/TAFE/XNA/LunarLanderSprites.zip

Blackboard:
Apply introductory object-oriented language skills [DO053 | ICAB4219B]

Look under Week 5 in Blackboard

http://drewfx.com/TAFE/XNA/LunarLanderSprites.zip

Design Discussion.
Lunar Lander is a class game from way back video displays could be controlled and vector graphics
could draw some rudimentary images on the screen. You’ll probably seen an oscilloscope’s output?

That’s essentially how pong started for example.

Some dude figured out how to reorganise the display in a meaningful way and started the craze of
video games.

Yes, they are freaks. But they are smart-ass freaks that made more money than we probably will.

Here’s another few vectorised images that are games...

Recognise this one? Tetris.

And finally we come to Lunar Lander...

The object of the game was to land on the pads and using a bit of fuel and gravity, attempt to land
somewhere near them at a low enough speed not to impact the ground. We are going to recreate
that game.

We need some graphics first so grab them from the link at the start (if you haven’t already) and
unpack them to a folder called XNA_Week5. You will import these graphics soon enough.

A new project
Let’s start a brand new project. With Game Studio 3.1 open click on File->New Project.

=i Start Page - Microsoft Visual C# 2

File | Edit Wiew Tools ‘Window He

2l MewProject... Ctrl+Shift+
u

(3] | ©penProject... CErH-Shift+0
[OpenFile... Ctrl+0

lrem

Then select Project Type (on the left) as XNA Game Studio 3.1, select Windows Game 3.1 — this still
uses XNA. Give it the name LunarlLander, select a new folder on YOUR hard drive to output to and
click on OK.

New Project
Project bypes: Templates: || El
(= visual C# ¥isual Studio installed templates ad

AMNA GAamE din 3.0

#MA Game Studio 3.1

&l
el

Windows #box 360 *box 360 Zune Game

Game Libr.,, Game (3.1 @ame Libr... (3.1)
= : |
= a
Zune Game Content PlatFormer
Library {3.17 Pipelne E... Skarter ...

My Templates

£

& project for creating an #Ma Framework 3,1 Windows game {.MET Framework 3,5) |

Marmne; | LunarLander |
Location: | Dt Andy TAFE b afework) TAFE_GamesAssetsi XAl Weeks v| [Browse, ..]
Solution Mame: | LunarLander | Create directary For salution

Ok H Cancel l

It may take a little while to create the project. Once it’s loaded make sure you can see Solution
Explorer on your right. If you can’t, click on View->Solution Explorer...

ander - Microsoft ¥isual C# 2008 Expre

W Project Build Debug Data Toc
% Class View Chrl+w, C E
| ErorList Chri+w, E
1 3 output Chelbw, o |
1 5 Properties Window Chrl+Ww, P —
3 l-'-“f"g Solution Explarer Chrl+i, 5 —
; 2 | Task Lisk Chew, T q
2 ¢ Toolbox Chrl+iy, %
: Other Windows 3 iA
= Toolbars (3 N
i =l Full Screen Shift+alt+Enter g

Loading Sprites.
Now the first you wanna add is the graphics. So in the Solution Explorer, expand Content and Add
New Folder-> and call it Sprites...

Solution Explorer - Content

ENE S|
'_; Solution ‘LunarLander' {1 project)
= ﬁ;’ LunarLander

=d| Properties 28 Type
3] References File Folde
5 . N
Add P MewItem...
Add Reference... 2] | Ewisting Ttemn. ..
Debug k[[4 MewFolder

== L=l
'_; Salution ‘LunarLander’ (1 project)
= ﬁﬂ' LunarLander
=d| Properties
«J] References
= T Content
«d] References

Sprites
] Game.ico
#] Gamel.cs
|28 GameThurmbnail.prg
] Program.cs

Now right click on Sprites and Add->Existing Item...

'_: Solution 'LunarLander' {1 praoject) Im Explorer, expand Conte
[= ﬁi’ LunarLander
=d| Properties
“d] References
=k T, Content
g References

2] Game.ico Add ¥ |] Mew Item...
#] Gamel.cs

|28l GameThumbn
] Program.cs 4 cut 4 Mew Folder

Exclude From Project :i:| Existing Ikem...

And browse to where you unpacked the sprites...

Add Existing Item - Content FZ|
Loak jr: |l‘f)Week5 v| 0 T -
= [CLunarLander
[
Desklop
LunatLandersprite . prg
Projects
by Computer
Object hame: |"LunalLanderSprite.png" "FlameSprite.png" "'lu V| [Add ']
Objects of type: |Eontent Fipeline Files [*fbx;"«." brop;”. jpg:” phi v| [Cancel]

Now if you expand the Sprites folder under Content you will see them.

'_; Solution 'LunarLander' (1 project)
[= ﬁi’ LunarLander
=d| Properties
3] References
= :;_'Ccuntent
o) References

Sprites

Kﬂ FlameSprite.png

Eﬂ lunarGround. prig

Eﬂ LunarLandersprite.png
j Game.ico

The name of the folder is what you use in the method LoadContent. So to proceed in a straight
forward manner, let’s add that code now. In the Solution Explorer double left click on Gamel.cs.
Scroll down until you find the declaration of SpriteBatch and add the following code...

[namespace LunarlLander

{
é A4 Caumarys
48 This is the main type for your oame
o A8 < sumar v
= public class Gamwel @ Microsoft.Xna.Framework. Game
{
GraphicsleviceManager graphics:;
SpritebBatch spriteBatch;

private TextureZl lunarLander:
private TexturseiDl backgroundImage; Q-,

private TextureZl flamelmage;

Then using the member browser (top right of the source code) select LoadContent...

Gamel.cs® " Spart Page /-K

vfgLurnfan.Eunu:har.Gamn&:l w | % Gamel() t W [’
Lusing Microsoft. ¥na.Framework. Stor|a backgroundImage pa—
¥ Draw(GameTime garneTime)
E namespace LunarLander ¥ FlameImage
: W Gamell)
é A48 caummarys ﬁ:g@FTG
Ji¢ Thi= i= the main type for 3_mmaFﬂj s
Py L 0adiContent()
o SO = aunar v
ey 1 - T £ =¥ lunarLander
= i iz class Gamel @ Microso t;:,\l'spriteBatch
i ¥ UnloadConkent()

Craphicslevicelanager grap
SJpritebBatch spriteBatch:

3% UpdatelGameTime gameTime)

In LoadContent you set up sprites and sounds required for the game. Let’s load those sprites as
follows...

protected override woid LoadContent()

i

Sf Create & new SpriteBatch, which can be used to draw textures.
spriteBatch = new SpritebBatchi(Graphicshewvice) !

lunarLander = this.Content.Load<TexturezDz> ("3priteshh LunarLanderiprice™) ;

‘:‘ backgroundImage = thizs.Content.Load<TextureZDz» ("Spritesyh lunarGround™) ;
flameImage = this.Content.Load<TextureiZlx ("Iprices''\ FlameSprice™) ;

Notice that you don’t need .png or .jpg. It works it out. You are only allowed jpg, pngs and tga’s for
Xbox anyway. Notice also that it has used the Sprites folder by specifying “Sprites\\” in the filename.
If you change your Sprites folder you will need to update this as well.

Displaying the scene.

We’'ll need to know the screen metrics so at the top where you defined the sprites scroll up and
define screen height and width here...

private TexturezD lunarLander;
private Texture:Zzl backgroundImage:
private TextureZD £lame Image:

private =static int screenWidth:
private ztatic int screenHeight:! E

public Gamel ()
{

WEe’'ll need to grab them the first time the screen is created so using the method browser find
Initialize and type in the following code...

protected override wold Initiali=e|)
{

screenHeight = graphics.Graphicshevice.Viewport.Height: -
screenlWidth = graphics.Graphicshevice.Viewport . Width;

hase.Initialize():

Use the member browser and find the Draw method. Add the following code to draw the
background scene.

protected override woid Draw(GameTime dgatoeTime)
{
Graphicshevice.Clear (Color.CornflowerBlue) ;

f¢ begin drawing sprites
apriteBatch.Begini) :

A8 draw the starfield

\j spriteBatch.Draw(backgroundImage,

new Fectangle (0, 0, screenlWidth, screenHeight),
Color,.White) ;

/4 =stop drawing sprites.
spriteBatch.End() ;

b

hase.Draw(gameTime) ;

Let’s give a test now we have something to see. Hit F6 to compile and if you have any errors double
click on the error report and see if you can figure out why it’s not working. Just trace back through
this doc and check your spelling.

Next press CTRL + F5 to run a Release version of the game. You should see this — my own
programmer art made from a bunch of Google’d images — pretty sweet hey? Shut down the game
by hitting the X.

#* LunarLander

Onscreen Display
WEe’'ll need some text on the screen to display our velocity, fuel remaining and a status of whether
we’ve crashed or not. Let’s define some attributes (variables) first. Scroll to the top of Gamel.cs

and enter these definitions.

private static int screenWidth;
private static int screenHeight:

private float gravitcy = 9.38f:;

SpriteFont Fontl; &
Vector: FontPos;

Next we need to set up the fonts. Firstly, go to the Content tree in Solution Explorer, the right click
on Content, select Add->New Item...

[=d| Properties
[[«3] References

BN ot

[-=] Referen g | Upgrade Selution...

- [Sprites Add |] Newltem..
Add Reference...]| Existing em...
Debug b | [| Mew Folder

Now select Sprite Font...

P

Add Mew Item - Content

Templates:

Visual Studio installed templates

g X A

XML File Effect File Sprite Font

My Ternplates

Search

Find the item in the Content tree and rename it Arial...

E| : Content
[[+3] References
- 3 Sprites

; WY Arial.spritefont

o] Alien.cs

MAKE SURE TO KEEP THE .SPRITEFONT suffix.
Now let’s tweak the XML for the font to look like it should, Arial, Bold, Italic.

Find the font in the Content tree...

)

'_E Solution 'LunarLandet' {1 project)
= 5;7 LunarLander
|=d| Properties
[:3] References
= : Content
T [+g] References
= [Sprites
|8 FlameSprite.png
Eﬂ lunarizround. png
Eﬂ LunarLanderSprite.png
Arial, spritefont
|_f| Game.ico
] Gamel cs
& GameThumbnail, prg
] Program.cs

Double left click on it to bring up the XML. Now find the first entry called <FontName> and change it
to this...

Modify thi=s string to change the font that will be imported.

<FontHamexhrial</Fontilame> *Eﬁgtmmuummwm
e -7}

Scroll down and find <Style> and change it to Bold, Italic...

<!—-

S5tyle controls the style of the font. Valid entries are "Regular”™, "Bold™, "Italic™,
and "Bold, Italic", and are case sensitive.

-

<Style>Bold, Itali::{,f.ﬁt;-"_E} %ﬁm

"

Next we need to load the font into the game so go to Gamel.cs (from Solution Explorer) and select
LoadContent by using the member browser and type in the following...

lunarLander = thisz.Content.Load<TextureiZl> ("Sprites)’ LunarLanderSprice™)
flameImage = this.Content.Load<TextureZDx ("Sprites’\\Flame3prite™)

4 set up the fonta.
, Fontl = Content.Load<SpriceFont> ("Arial™)

FontFos = new Vector:zZ (screenWidth / 2, screenHeight / 2)1:

We need a generalised print function (you can use this in the future for other situations) so using the
member browser select the Draw method and just above it make this new method...

-private void Print3tringistring wy3tring, VectorZ position)
{
ff Find the center of the atring
VectorZz FontOrigin = Fontl.MeasureS3tring(my3tring) 7 2;
- ff Draw the string
spritebBatch.lrawdtring (Fontl, my3tring, position, Color.LightGreen,
0, FontOrigin, 1.0f, SpriteEffects.None, 0.5f):
p
LKK < AUNmMAL Y
F44 This is ealled when the gamwe should draw itself.
FAS € aummaryr

A4 <param name="gameTime">Provides a snapshot of timing values.</param:>
protected override woid Draw(GameTime gatneTime)
i

This method takes a string of characters and measures their width to determine where to place the
string on screen taking into account the screen coordinates passed in using position as well. Then
using a lengthy spriteBatch call it uses the Font object we’ve created to draw the text on screen. We
make this a method because in future we don’t want to stuff around writing this again everytime we
want something printed on the screen. We just want to say PrintString(“something”, where).

Directly below that add a new method called DrawText which basically handles all the text we want
to draw all in one go...

[private wvoid DrawText()
1
fF Draw 3trings

string wvelocitcy = "™Welocity: " 4+ Convert.ToS3tring (wmyPlayer.Speed):

Print3tringivelocity, new VectorZ (100, 50)):

string fuelPemaing = "Fusl: " + Convert,ToString (mylFlaver.FuelRemains) !
__)_ Print3tringifuelRemainyg, new VectorzZ (100, 150)):

if (tyFPlayer.bCrashed)
{
Frint3tring("Crashed!!!'™, new Vectori (screenWidth / Z, =screenHeight / Z))1:

A4 cswmar v

477 This is called when the gamwe should draw itself.

A4 sunmarye

A4S <param name="gameTine">Provides a snapshot of timing values.</params
protected override woid Draw|GaweTime gameTie)

You'll notice it uses myPlayer attributes, such as myPlayer.Speed — which is from the ShipClass we
haven’t written yet. Just type them in for now and we’ll add that soon. However let’s have a look at
what this method is doing to understand a few things. We cast a string called velocity and format a
string to include “Velocity: “ and then we concatenate the myPlayer.Speed to it. We have to convert
Speed from a number to a string and that’s what the Convert.ToString does. We must do it this way
in order to create a string of characters otherwise it would generate an error when adding the two
together.

Notice how we use new Vector2 and that a convenient way to make an x/y coordinate to place the
text. We do the same things again with FuelRemains.

At the end we need to know if the player has crashed (which will write later) but it the Boolean
bCrashed is true then it must update the onscreen status to say “Crashed!”. We place that in the
middle of the screen.

Finally we need to call the DrawText method during our applications Draw method, so use the
member browser to find Draw and add this code...

protected override woid Draw(GameTime gatneTime)
{

Graphicshevice.Clear (Color.CornflowerElue) ;

S bhegin drawing sprites
spriteBatch.Begin()

f¢ draw the starfield

spriteBatch.raw(backgroundImage,
new HEectangle (0, O, screenWidth, =creenHeight),
Color.White) ;

Jf draw all text now

DrauText (] ; —

J4 stop draving sprites.

Don’t bother running it yet, because we need to define the player class.

Adding the Ship Class.

We need to add a new class so right click on the project name Lunar Lander in the Solution Browser

and click on Add->New Item...

4' _; Solution 'LunarLander’ {1 project)

woitself.
ol (IN=EE =0 | unarLander EETN

r

. [Build
1l1|:|t of timing =
ime) g O Rebuild
Publish, ..
us) ; =1

Package as KMb Creators Club Game

):‘IJ Create Copy BF Project For xbox 360

vz Create Copd# of Project for Zune

st Meww Tkem, . F———[— Add

] Existing Item... add Reference, ..
[y | Mew Folder Set as StarkUp Project

In the dialog specify a class as the item and name it ShipClassl.cs...

Add Mew Item - Lunarl.ander

Cakeqories: Templates:
(= Wisual C# Yisual Studio installed templates
#MA Game Studio 3.0
XMA Game Studio 3.1 —

A A

About Box Application Application Assembly
Configurati,.. Manifest File Informati...

C\ﬂ [I_I .=_-—cﬁ : :Igl;]

Code File Dataset Debugger Interface

Wisualizer

Local MDI Parent Resources B
Database Farm

An empty class definition _/ |
(i |

\\-L % I add H Cancel]

@

E%

LIMG Eo S0L
Classes

]

Service-based Settings File
Database

I8

Mame: ShipClassl.cs

Now double left click on the file ShipClassl.cs in the Solution Browser.

Design Discussion.
The ship needs a few things to work. Some sort of way to track it’s propulsion, a sprite to draw it,

some coordinates to place it, record the fuel remaining and some wave to move it.

We will of course need to access the Microsoft framework (that’s what we’re learnin’ here) so add

these two lines at the top...

[using 3IysStem:!
using Systewm.Collections. Generic:
using System.Ling:
using System. Text:

using Microsoft.Zna.Framework:
using Microsoft.Zna.Framework.Graphics: {"""
[namespace LunarLander

{
% class ShipClassl
{

Let’s start by defining some attributes at the top. Type these attribute inside the {} braces...

I namezpace Lunarlander

1
] class ShiplClassl

1
private double Thrustipeed = 20;
— priwvate float =X, =Y:

public kool bCrashed = false;
- K
_.}
Now we need to track thrust, gravity and velocity and the way we do this is by tracking it over time.
We’'ll need a time keeper to work out home much time has passed since last time we updated it.
Remember we want to protect data so we need to have a get and set method and this is how we
write it. The upper case version of the attribute is the one we can use publicly which exposes the

private lower case version. Make sure you put this inside the curly braces for the class...
public bhool bCrashed = false:

ff expose timePassed to external code
public float TimePassed
i
get { return timePassed; }
9 set { timePassed = wvalue; }

'
| brivate float timePassed:

‘e !
[]

Next we want to access fuel for the drawing text section in Gamel.cs that we spoke of before, so in
ShipClassl.cs just below what we have typed, add this get / set method. I've added a comment
there to remind you to keep all this code inside the class...

private float timePassed:;
-ff expoze fuel to external code
public int FuelRemains
i

get { return fuelBRemains; }

_’ zet { fuelRemains = wvalue; }
H
private int fuelRemains:

V4 dont type code below this line

Let’s do two at a time now, so we need to expose Speed and Position to external code. Type this in
below the code you just added...

priwvate int fuelRemains:

{f expose speed to external code
public float Speed
{

get { return sX + sY: }

set | 1

puklic Vector:d Position
{
get { return position; }
set { position = walue: }
b

private VectorZ position;

v /S dont type code below thiz line

Notice that Speed is a little different and returns two summed attributes sX and sY which we had
previously defined so there is no need to return speed. sX and sY are going to be used to move the
spaceship along the x and y axis, and it’s this movement we determine as speed.

We'll also need to expose Gravity and Velocity, so add these after Position...
priwvate VectorZ position:

-.public float Gravity
{
get { return gravity: }
set { gravity = wvalues; }
H
private float gravity;

—9. public VectorZ Velocity
{
get { return wvelocity:
set { wvelocity = wvalue; }
H
private VectorZ welocity:

Y 44 dont type code helow this line

And finally we will expose the ScreenSize (so we can pass the screen size to this class) and a hook
into the texture so we can send that in here too. We use the ScreenSize to know when we’ve hit the
ground. The texture is just managed in Gamel.cs and passed into the Ship class when loaded.

private VectorZ weloocity;
—
/¢ need this to know where we are on the screen
public Vectori Screenbicze
{
get { return screeniize:; }
zet { screenlize = value;
H
private WectorZ screeniize;

_) public TextureZD Sprite
{
get { return shipSprite; }
set { shipSprite = wvalue; }
H
private TextureiD ship3prite;

—

¥ /S dont type code helow this line

All good. Now everything’s defined, let’s start adding some functionality to the ship class.

Ship Methods.
As with all classes we need to define the default constructor. In this case on creation we can set the
fuel limit as well...

private TextureiZDl ship3prite:

f¢ the default constructor
public ShipClassl|()

é {

fuelBemains = 1000;

v /¢ dont type code helow this line

Next we want to be able to move the ship. Type this in and I'll clarify what it does afterwards.

fuelRemains = 1000;
H

-KK move the ship with a bitc of matﬂ

public woid Mowve [GemeTime gatneTime)

{
TimeZpan ts = gatweTime.ElapsedGameTime !
timePassed = [(float)ts.Total3econds:;

2¥ += gravity ¥ [(float)ts.Totalleconds:;

if (position.¥ > screendize.¥ - 100)
{
-2 position.¥ = screenfize.¥ - 100;
if (X + sY > 35) bhCrashed = true;
3X = 0:
=¥ = 0;

}

position.X 4= =X ¥ [float)ts.Totalleconds:

position.¥ += Y ¥ [(float)ts.Totalleconds:
K

v 4 dont type code below this line

GameTime is an object that handles units of time in various forms. We use it on the next couple of
lines to determine how much time has passed since the last update cycle. Remember Updates and
Draws rarely happen at the same time. Draw calls happen when the raster beam hits the bottom of
the screen which is dependent on the GPU (Graphics Processing Unit) and the Update calls happen
when the code has done a full cycle based on the CPU (Central Processing Unit).

What we are doing with simulations such as these where time is part of the calculation we can’t
allow the drawing to get in the way otherwise time can essentially slow down or speed up
depending on the GPU clock speed.

Physics 101.

Anyway the calculation for displacement = gravity * time...
Ax =yt

... derived from ...

- Ig
velocity = n

... or velocity = displacement / time.

Let’s have a look at what’s going on here so you can learn to grab physics calculation off the ‘net and
use them in code. | scoured the ‘net looking for equations of motion and found this first one.

Ax=wti

The triangle symbol is universal in mathematics for DELTA. Delta refers to a shift in position, or
displacement from an old position. In this case the equation | found was dealing with movement
along the x axis. Next in the equationis=vt

This means multiply v by t which can sometimes be represented as v.t

If you want to convert this to computer code you would do this(DONT TYPE THIS IN — JUST READ),
and this is what you will always be struggling to do over your career in graphics programming
especially.

float displacement = 0;
float welocity = 0.5L;
float time = 0.1f;

J4 work out displacement
diaplacement = velocity ¥ tiwme: /7 0.05

S work out velocity
velooity = displacement / time:

Jd work out time
time = diaplacwent [/ welocity:

The last equation for time is an over simplification because you really need to know two positions
for an object to work out the time take to get from one to the other, but the principal is the same.

As I've pointed out in our first exercise with Physics, there really are only 3 fundamental elements of
measurement to deal with the displacement of objects, M(Mass), (A)Acceleration and (T)Time. Any
part of displacement equations must be a derivative of these. So in our case gravity = acceleration.
I'll show the method again to refresh your memory.

fuelRemains = 1000;
H

-KK move the ship with a bitc of matﬂ

public woid Mowve [GemeTime gatneTime)

{
TimeZpan ts = gatweTime.ElapsedGameTime !
timePassed = [(float)ts.Total3econds:;

2¥ += gravity ¥ [(float)ts.Totalleconds:;

if (position.¥ > screendize.¥ - 100)
{
-2 position.¥ = screenfize.¥ - 100;
if (X + sY > 35) bhCrashed = true;
3X = 0:
=¥ = 0;

}

position.X 4= =X ¥ [float)ts.Totalleconds:

position.¥ += Y ¥ [(float)ts.Totalleconds:
K

v 4 dont type code below this line

So now we know all that, the line...
sY += gravity * (float)ts.TotalSeconds)

... is doing this. It’s displacing Y by the acceleration of gravity over the time passed since the last
update. The (float) istype-casting ts.TotalSeconds to a float so that gravity and time
become both floats and are compatible. You will see type-casting a lot in your coding career.

Moving on the next thing we do is test the position of the Lunar Lander with the height of the screen
minus 100. This is the landing point. If this has been achieved we do a bit of math to work out the
final speed of impact and if it’s over 35 then set bCrashed to t rue, then reset the speeds (or
velocities or displacements) or x and y.

At the end of the method we update the position of the lunar Lander with the final velocities along x
and y scaled by the time since last update. Notice that all essential calculations that affect the
movement of the Lander are affected by time. This creates a realistic simulation of motion for the
user no matter how fast or slow their graphics card is.

Right! So how do you feel now? If you understood the last bit then you have a brilliant mind — well
done. If you are like the rest of us and just got totally confused then welcome to the human race.
We really aren’t meant to understand this maths gibberish in normal day-to-day life, that’s why we
write this stuff down and work out calculations to handle the numbers for us.

So now the hard bit’s over let’s finish the code off.

The next bit we need to add is thrust over time. We know are all knowledge-empowered with our
new physics brains so go ahead and see if you can figure out what’s going on as you type. This goes
just after the last function.

position.¥ 4= sT¥ ¥ [(float)ts.Totalleconds:

k

// caloulate the thrust
public woid Thrust (double totalleconds)
{
if [(fuelBRemains <= 0) return;
A lander rotation
Adadd thrust
hirashed = false:;

—j» 2EX -= [(float)Math.3in(0) ¥ [(float)totallSeconds
Y —-= ([(float)Math.Cos(0) * [(float)totalleconds

fidecreaze fuel
fuelRemains—-:

-

Y /4 dont type code below this line

if [(fuelBRemains < 0) fuelBRewains = 0;

* [(float) Thrust3peed;
* [(float) Thrust3peed;

If there is no fuel left then we can’t thrust so first we check that and return out of the method if that
is the case. However if there is fuel left we reset the check for crashed because we can thrust again,

and work out the displacement of sX and sY (speed on x and y) using thrust speed (20 always)

multiplied by time and a rotation. This week we are just dealing with up and down so leave the

rotation at 0. We then reduce our fuel by 1 unit and make sure we can’t have negative fuel.

Drawing the ship.

We just have the final update and draw methods to add after that previous method.

if (fuelBRewmains < 0) fuelRewmain=s = 0:

44 update per clock cycle.
public wvoid Update [(GameTime gameTime)
{

Move (gameTime) ;

K
._} A4 update per gpu cycle.,
pukblic wold Draw(SpriteBatch spriteBatech)
{
int ® = [(int)po=sition.X;
int ¥ = [(int)position.¥:

}

v/ dont type code helow this line

spriteBatch.Drawviship3prite, new Rectangle (¥,

96, 9a8), Color.White)]:

Using the new Rectangle command we can resize our ship sprite to whatever size we want. And

we’re done for the ShipClass.

Let’s finish off Gamel.cs to allow for ship class to be used.

Implementing ShipClass1
Open Gamel.cs from the Solution Explorer and find the top of the code, then scroll down to where
we defined the fonts and add this...

ZpriceFont Fontl:
Vectors FontPos:

ff player stuff

priwvace static ZhipClass1l wyPlayer: é,.;-
Feyhoarditate key3tate;

bool bFlameIs0n = false;

public Gatnel ()

This creates a handler to a potential instance of the ship class, a keystate handler for input and a
Boolean to know when to draw the flame.

We want to initialise the font system now and the player, so using the member browser in Gamel.cs
find Initialize() and type in the following changes...

protected override woid Initialize()

{
screenlHeight = graphics.Graphicshevice.Viewport.Height!
screenllidth = graphics.Graphicshevice.Viewport.Width:

hase.Initializel):

FontPozs = new VectorZ (100, 20):
CreatePlayer () :

Next we need to define the CreatePlayer method so scroll down after this method and add it...
CreatePlayer();

}
—

private woid CreatePlayer|()
{
myPlayer = new ShipClass1():
myPlayer.3prite = lunarlLander;
myPlayer.Screeniize = new Vectors (screenlWidth, screenHeight) !
myPlayer.,Gravity = gravity:
- wyPlayer.Pozition = new Vector? ((screenWidth / 2) - (wyPlayer.3prite.Width / 2},
screenHeight / &) ;

¥

S <awmarve

In this method we first instantiate (or create a new copy) of the ShipClass using the new keyword.
This calls the default constructor in ShipClassl.cs which sets fuelRemaining to 100, as we know.

Next we assign the lunarLander sprite to this class using the Sprite set command we have already
defined in ShipClassl.cs

We pass in the screen dimensions, gravity and place the lunar lander on the screen taking into
account the width of the sprite.

Input

We now want to control the thrust by allowing the player to interact. Pressing the A button on the
joystick or keyboard will make this happen. Using the member browser in Gamel.cs find the Update
method and type in the following...(remember we want to process maths at the speed of the cpu
not the gpu so thrust control is done here)

protected override wvoid Update (GameTime gameTime)

H
{4 Allows the game to exit
if (GamePad.Getltate [FlaverIndex,One) .Buttons.bBack == EButtonftate.,Pressed)
this.Exit ()

keyitate = Hevhoard.Get3tate () :

#f hllows the default game to exit on Xhox 360 and Windows
if ([(GamePad.Getitate (Flayver Index.One) .Buttons. L == Buttonftate.Pressed |
keyvitate. IsKevloun(Eeyvs.4))

myFPlayer.Thrust (gameTiwe.ElapsedGarneTime . Totalleconds)
if (myPlayer.FuelFemains > 0) hFlamels0n = true;
H

—} else

bFlamelsin = false;

/4 now move the player
myPlayer .. Nove [gameTime) ;

hasze., Update (gameTime) ;

When you press A it calls the Thrust method and passes in the time since last update so thrust is
calculated correctly over time. We can check if there is any fuel left by using the publicly accessible
FuelRemains set method of the class and if it is we toggle the b1 ameOn to true, otherwise it is
false. Then finally we tell the ship class to move using the time since last update as well because we
want it to work out the math independent of how fast it can draw the graphics.

Okay, one last thing remains... drawing it all...

Using the member browser in Gamel.cs find the Draw method (not the DrawText method), and add

the following changes...

A4 <param nawe="gaweTime":>Provides a snapshot of timing wvalues.</param:>
protected override wvoid Draw(GsmeTime gamweTime)
{

Graphicshevice.Clear (Color.CornflowerBlue) ;

/4 begin draving sprites
spriteBatch.Begin()

ff draw the starfield
spriteBatch. rawv (backgroundImage,
new Fectangle (0, 0, screenWidth, =screenHeight),
Color.White) ;
p—
/f are we thrusting?
if [(bFlameIsin)
{
spriteBatch.DrawviflsmeImage, new Fectandgle | (int)wyPlayer.Position.X + 22,
(int)myPlayer.Position.¥ + 64,
ﬁ' g4, 64), Color.White):;

/f draw the player
wyPlayer.Draw(spriteBatch) ;

/4 draw all text now
DrawText () :

We add two command to draw the flame if we are thrusting and then call the draw method on the
player class with a pointer to the spriteBatch. Notice the bFlamelsOn drawing method rescales the
sprite using the new Rectangle again. | don’t really like this too much as art should always be scaled
to suit and then imported, so we shouldn’t need to scale. But this will do for this quick example.

Running the game.

Okay press F6 to compile, fix any errors (will be typos) and then run using CTRL+F5. You will see the
lander drop. Hit A to add thrust and see the velocity change. If you hit the floor too hard you get
the CRASH!! Status update comes up. If you run out of fuel you can no longer thrust. Have a go.
Once you have finished, save this away and continue with the 2D video tutorials | have provided you.

#* LunarLander

Velocity: -37.72019

Fuel: 653

