
Programming Masterclass for Tank tutorials.

So we all understand how the code is working right now and to overcome a lot of the bugs that have

come up this tutorial will be a reference in future for trouble shooting. Alongside this tutorial is a

project with errors that have come up so we can work through and fix them all. This will take the

pressure off the lectures to enable us to help you students and this will empower you to be able to

help yourself.

Table of Contents
Troubleshooting .. 1

Locked file while trying to backup your game. ... 1

I copied my game (scene file) and I try to load it and there is nothing there................................. 2

What does the marking in the tutorial files actually mean? ... 2

What do the Start and Update functions do? ... 3

Parse Error. ... 3

Unexpected Symbol (something)… ... 6

Object reference required to access non-static member. .. 6

My bullets collide with the cubes but my tank doesn’t – possibly no console messages either. 10

Understanding the components used so far. ... 11

What is the Rigidbody component?.. 16

Troubleshooting

Locked file while trying to backup your game.

This is because the Temp folder and lock file are being used by Unity.

Solution: Shut down Unity first then copy the entire project folder.

I copied my game (scene file) and I try to load it and there is nothing there.
Solution: You need to copy the entire project folder – the scene files are only a small part of

the entire project. See below. Best to go up one folder and copy the entire Code folder in

this case.

What does the marking in the tutorial files actually mean?
I use red circle to point out the buttons you should focus your attention on

I use square brackets and squiggle brackets to show you which parts of the code you should

add. In this example I mean add all the code where marked next to the squiggly bracket.

The code not marked means start writing the code after that code that is already there. So

in the example below I’m asking you to add the entire OnCollisionEnter function not the

Update function. Add the OnCollisionEnter function below the existing Update function.

What do the Start and Update functions do?
When you create a new script (a class) you automatically get Start and Update in the class

file. Start only happens once, the moment the game starts so it’s a good place to set initial

values for variables. Update happens every CPU cycle – every time the CPU draws to the

screen. The Update function is where you want to catch key presses and move things

around.

Now were are going to use the broken (scripts with errors) code and run a series of small fixes to

make it all run again.

Parse Error.
1. Parse error (end of script reached) Typically you will see this as a red error. It

means there is probably brackets / braces missing.

2. Double click on it to open Mono Develop.

3. Carefully check each bracket / brace is in place

4. You can do this by clicking on one brace and Mono Develop shows you its partner.

In this case below the Kill has enough braces so that’s not the error.

5. In this next case it’s also got a partner brace – so that’s fine too.

6. The Start method braces are partnered up – so that’s not it.

7. But now click on the brace at the top line and notice it doesn’t have a partner

where is should be down the bottom. There’s the error. Add a closing brace to fix

the problem. Save and flip back to Unity to fix the problem.

8. Should look like this now if you click on the brace again.

Unexpected Symbol (something)…

This means that you probably have missed a semi-colon - the wink character ; at the end

of a previous line.

1. To fix the error, double left on the red error.

2. This will open up Mono Develop and take you to the line where the error is.

3. Look up to the previous line to see the error.

4. Also notice some other clues you may have seen when the problem occurred.

5. The wavy line under the next line after the missing semi-colon.

6. The red words muzzle.position and muzzle.transform.forward gives you the clue

that the error was probably on the same line as the declaration of muzzle further

up the script.

Object reference required to access non-static member.
1. You will see this or a similar error down the bottom.

2. Double click on the error. The code looks like this.

3. Seems to be okay right? The rest of the error mentioned something about

AddForceRelative.

4. So we know it’s line 27

5. It compiled okay. So you would think it was written okay. This problem arose

when you were typing and Intellisense (autocomplete) go in the way.

6. It even suggested using the second choice. It did this because typically you

would write something like this and essentially it thought that’s what you

wanted.

7. You always do this to make a brand new variable…. Data type (Rigidbody) then

instance (myRigidbody)

8. But it’s wrong in this case because we wanted to perform a function on the

rigidbody attached to the object.

9. Go back to Unity and click on a Cube to see what I mean.

10. It confuses the issue because it is also spelt with an uppercase R.

11. You need to know the difference.

12. When you add a Rigidbody to an object you make an instance of the MAJOR

Rigidbody. The MAJOR or also known as the BASE CLASS which can create

copies of itself – like SOLDIERS.

13. An instance (or reference) of the BASE CLASS (THE MAJOR) is now sitting on

the Cube – the SOLDIER – as it’s a minion the convention is to set its copy of

Rigidbody to lowercase. The SOLDIER references the MAJOR for orders.

14. The next part of the error helps understand this a bit more.

15. “An object reference” it says. Ah ha! It needs the SOLDIER not the MAJOR.

16. “is required to access non-static member” A member is a function or variable of a

BASE CLASS. The MAJOR Rigidbody is known as static in the universe of C#

which means you can’t do anything with it other than copy it with all it’s

functions (orders). And you would want to either. No sense modifying the

MAJOR because he knows how to fight. You must give attitude adjustment and

training to the SOLDIER (the reference) . As a reference they can be shaped

and moulded to become the ultimate killing machine – much like your code.

17. You can’t tell the MAJOR what to do but you can give order your SOLDIERS.

18. So the non-static member (function) it’s trying to access is AddRelativeTorque

which in turn will modify the reference’s (SOLDIER) behaviour. In this case we

want the rigidbody to get a kick and spin (that’s what Torque is – spin)

19. So to fix the error we just need to use the reference to the Rigidbody sitting on

the cube not the Major (Base Class) … we do it this way… change the Upper

case to lowercase – change it for AddForce as well (the following line)

20. Save and flip back to Unity and the error goes away.

My bullets collide with the cubes but my tank doesn’t – possibly no console messages either.
1. When you fire the cubes are tumbling around as expected or you’re not seeing any

messages in the console about cubes.

2. Most probably you’ve got the OnCollisionEnter function incorrectly capitalised.

3. Looks fine, compiles without error, but still the problem remains.

4. It’s because you wrote a function using correct C# formatting so the compiler

thinks it is okay.

5. The problem is that when a collision happens Unity looks for a function in any

script called OnCollisionEnter, spelt and capitalised exactly like that. If you

change anything about it and the collision occurs you misspelled or miss-capitalised

version is NOT called.

6. Solution : Capitalise it as required by Unity…

Understanding the components used so far.

Yeah, you thought that last bit was nerdy. Well now we kick it up a notch.

Most of the code you have used so far is accessing components on the object itself in Unity.

1. In the prefabs folder, click on the bullet object to bring up the Inspector. See the Translate

section (or component) at the top

 2. It is spelled with a capital T.

 3. It has a Position, Rotation and Scale section as well.

Generally, the components and variables in script are lowercase and Unity capitalises them to make

them easier to read.

 4. So find the HandleBullet script in the list of components in the Inspector of the

 bullet object and double left click on it to load it up into Mono Develop.

 5. If you look at the picture above and see the word Timer and then look at the code below

you will see the same word timer is there but its lowercase. Also notice the public

float in front of it.

 a) The reason timer has changed case is the way Unity shows variables in the

 Inspector to make it easier to read but it’s the same variable.

 b) The word public makes it appear in the Inspector as well so you can change it

 later. So even though it’s 5 in the script you can later change it to another value,

 say 3. But note that it will still be 5 in the script. So if you make a brand new

 object that uses the HandleBullet script it’s value timer will reset to 5 until you

 change it. Also note that as the bullet is a prefab every bullet you fire will adopt

 the change to timer. That’s what prefabs do. They are a prefabricated game

 object with particular settings that remain the same when created in the game,

 such as when you fire it (called Instantiation - the creation of an instance of an

 object)

 c) The word float makes timer an optimised floating point number - or float for

 short. Typically maths calculations on computers are slow except for addition and

 subtraction, and that’s using integers (whole numbers). When floating point

 numbers are used (fractions of numbers using decimal places) the computer has a

 hard time using them, so the float was introduced giving it a limited number of

 decimal places, and hence less memory usages and processing time so it was great

 for 3D games.

6. Look at the Update method now. A method by the way is a another name for a function. A

function is a segment of code surrounded by braces that does something, or performs a function.

This Update method below is just a mock up and would stuff up the bullet so it’s just for tutorial

purposes. If you’re curious about the reason why it would stuff up the bullet is because the bullet

also has a Rigidbody on it which is added to the Rigidbody to project it out of the muzzle. These

three lines would upset that so it’s not to be used.

a) Look this image below again at the Transform component, and remember it has Position,

Rotation and Scale in it.

b) Line 16 in the code above modifies the position variable in the component’s transform. The

+= symbol is called an operator - which performs a mathematical operation on a variable.

This one is called a preincrement but just think of it as an addition. To understand how to

read that line it’s adding transform.forward * 10 to transform.position.

c) transform/Transform is short for Transformation Matrix. Each matrix looks a bit different

from the others but to move objects around in 3D space they multiply all these matrices

together to end up with a final position, rotation and scale of an object - what you end up

seeing on the screen.

d) Here’s a bunch of practical matrix manipulations.

 e) Now you know that, you can understand that the transform.forward is just

 another matrix added to the transform.position. transform.forward is a special

 matrix which contains a direction along x,y,z in alignment with the way the object

 is facing. So adding the transform.forward to transform.position moves it along

 the line it’s facing direction which could be facing any way. The * 10 (asterisk 10)

 means TIMES 10 - you can’t use X or x because they are read as variables so the

 asterisk was used. Another one is the forward slash / which is divide/division

 because you can’t use % as that is a modulus operator (essentially used to get the

 remainder of a calculation) + is plus and - is take. So transform.position +=

 transform.forward * 10 means move the object along the way it’s facing times 10

 - or move at speed of 10 the way the object is facing. The way its facing is

 represented as x,y,z and could be something like (-0.5,0.1,0.4) which is called a

 vector. Most of the time, vectors like these are unit vectors which means that

 none of the values are more than 1 because the size of (or magnitude of) the

 vector/directional line is 1 in that if you measure the length of the vector/

 directional line it’s 1 long.

 f) Incidentally if you were to use Vector3.Normalize(1.2, 3.5, 7.5) it would return

 a new unit vector (0.1,0.4, 0.9) and it’s length (magnitude it one) - so Normalize

 creates unit vectors. It’s better to have unit vectors because otherwise big number

 become unmanageable and messy. Also it make thing like setting the movement

 speed of objects easier to manage.

g) Line 17 shows how to rotate an object. It uses assignment operator = (just think of it

as “you are now this value”) to add a new Quaternion to the existing rotation. Unity needs

any manipulation of a object to use Quaternions.

 h) Here’s what it looks like.

i) The graph on the left shows you the transformation matrix for an object which we have

seen. The red tinted box covers the X, Y and Z positions of the object (purple text). In the

same red tinted area the yellow X,Y and Z are the angles of rotation. The purple shaded

areas handle the object’s scale.

j) A quaternion has x,y,z and w parts to it. If you look at the big yellow arrow (a vector) to

the right of the matrix you can see it represented graphically. I never spin the w coord

and always leave it at 0. But the x,y,z of a quaternion determine a vector in 3D space to

represent which way to turn the object. Incidentally if you use

transform.LookAt(someGameObject) it will automatically make a vector for you to point at

that object in this way. See how it looks like the arrow is pointing somewhere.

k) A vector is just a point in space (2D or 3D) and a direction. So in Unity a vector of (1,0,0)

points positive along the x axis(left and right). A vector of (0,1,0) points in a positive

direction along the Y axis (up and down). A vector of (0,0,1) points in a positive direction

along the Z axis (forward and back).

l) Looking at line 18 now, the scale is done using localScale (just the way it is) and it

needs a Vector3 to do it. In this case it scales it by 2 on each axis. It’s confusing but just

know that to scale an object use localScale.

What is the Rigidbody component?

2. The Rigidbody is accessed using the lowercase version. Here’s an example from the

CubeCollision script.

3. The rigidbody is a special physics component that allows objects to bounce, roll, fall, slide,

tumble and push other objects around.

4. In the example above you can see in the script it’s spelled with a lowercase r but in the Inspector

it’s uppercase. You can use lines 27 and 28 on any object in a script and it will compile, but if

you fail to have a rigid body component actually on the object in the Inspector you will get an

error like this.

5. Increasing Mass on the Rigidbody means it required more force to push it around but in turn it

easily pushes other object around that have less mass than it.

6. Angular drag slows the object from rolling.

7. Drag slow the object when moving.

8. Use Gravity creates gravitational like effects on the object pulling it to the ground.

9. Is Kinematic when set to true (or ticked) makes an object stop using physics calculations so the

script can move it around but it still does collisions as normal on other objects. I typically use it to

disable physics until I need the physics objects on. As you feel the need to populate your scene with

more and more objects containing rigid bodies you may notice the game slows down. To overcome

this you could turn off physics on the object by ticking Is Kinematic until you are ready for them to

be affected by physics.

10. The rest of the parts of Rigidbody we haven’t covered yet.

